

GUMMI- UND KUNSTSTOFFVERARBEITENDE INDUSTRIE

AUTOMOBILINDUSTRIE

MEDIZINTECHNIK

LABORS | INSTITUTE

LUFT- UND RAUMFAHRT

LEBENSMITTELINDUSTRIE

OPTIK

CHEMIE

PHARMAZIE

KOSMETIKINDUSTRIE

UND WEITERE ...

MESSBARER ERFOLG -QUALITÄT HAT EINEN NAMEN

QUALITÄT HAT EINEN NAMEN – BAREISS

ALS HERSTELLER VON INNOVATIVEN, ZERTIFIZIERTEN HÄRTEPRÜFGERÄTEN TRAGEN WIR VERANTWORTUNG FÜR GESICHERTE QUALITÄT.

Um die hohen Ansprüche und Erwartungen unserer Kunden an Qualität, Benutzerfreundlichkeit und Nachhaltigkeit der Bareiss-Produkte dauerhaft zu gewährleisten, planen, steuern und überwachen wir durchgängig alle Produktionsprozesse.

Das Bareiss-Managementsystem DIN EN ISO 9001:2008 und das Bareiss-Umweltmanagement DIN EN ISO 14001:2004 basieren auf einer funktionierenden, umfassenden Organisation. Kontinuierliche Verbesserung, Markt- und Kundenorientierung, kompromissloses Qualitätsdenken, Mitarbeiterzufriedenheit und Schutz der Umwelt sind hierbei feste Bestandteile. Weniger ist mehr.

WARUM KALIBRIERUNG?

Technik wird immer komplexer. Der Nachweis und die Dokumen-tation der Qualität werden immer dringlicher. Da die Anforderungen an die Qualität der Messmittel ständig zunehmen, sprechen gute Gründe für eine Kalibrierung, die in bestimmten Fällen sogar zwingend vorgeschrieben ist.

- Mit der ISO wurde der allgemeine Leitfaden zum einheitlichen Vorgehen bei Qualitätssicherungs-Nachweisen erstellt. Lässt sich ein Betrieb nach DIN EN ISO 9001 zertifizieren, verpflichtet sich, im Rahmen der Prüfmittelüberwachung alle seine Messmittel periodisch nachzuprüfen oder nachprüfen zu lassen. Diese Prüfung ist zu dokumentieren. Damit können Hersteller und Anwender nachweisen, dass sie die vorgegebenen Normen vollinhaltlich anwenden.
- Im Rahmen der Produkthaftung hat die Überwachung der Prüfmittel als Bestandteil der Qualitätssicherung ebenfalls einen hohen Stellenwert. So kann sie für einen eventuell erforderlichen Entlastungsnachweis im Schadensfall von wesentlicher Bedeutung sein.

BAREISS – Deutsche Akkreditierungsstelle

Fokussierung auf das Wesentliche; rasche und konsequente Umsetzung der Anforderungen unserer Auftraggeber sind gefordert, um im heutigen Wettbewerb zu bestehen.

Seit 1954 ist die Heinrich Bareiss Prüfgerätebau GmbH anerkannter Partner und kompetenter Spezialist für alle Aufgaben der Prüftechnik. Mit der Leistungsfähigkeit eines traditionellen Familienunternehmens und der Weitsichtigkeit für innovative Technologien, die wir in neuen Produkten und Systemlösungen umsetzen, haben wir uns erfolgreich im internationalen Markt platziert.

Unser Ziel ist es, die bisher erreichte Spitzenposition im Weltmarkt weiter auszubauen. Mit der Zuverlässigkeit der Bareiss-Produkte stellen wir uns auch in der Zukunft allen Herausforderungen des Marktes - wir bleiben Ihr verlässlicher Partner.

Ihre Brigitte Wirth, Kaufmännische Geschäftsführerin

WAS IST KALIBRIERUNG?

Bei der Kalibrierung wird die Abweichung der Anzeige eines Messgerätes von der richtigen Messgröße festgestellt. Über das Ergebnis wird ein Kalibrierschein mit den ermittelten Ergebnissen und der dazu gehörenden Messunsicherheit ausgestellt. Auf dem Prüfgerät wird ein Kalibrierzeichen angebracht. Dieses dokumentiert zusammen mit dem Kalibrierschein die Rückführbarkeit auf nationale Normale.

WFR DARF KALIBRIFREN?

Im DAkkS/DKD sind Kalibrierlaboratorien von Industrieunternehmen, Forschungsinstituten, technischen Behörden, Überwachungsund Prüfinstitutionen zusammengeschlossen. Sie werden von der Deutschen Akkreditierungsstelle akkreditiert und überwacht. Sie führen Kalibrierungen von Messgeräten und Maßverkörperungen für die bei der Akkreditierung festgelegten Messgrößen und Messbereiche durch. Die von ihnen ausgestellten DAkkS/DKD-Kalibrierscheine sind ein Nachweis für die Rückführung auf nationale Normale, wie sie von der Normenfamilie DIN EN ISO 9001 und der DIN EN ISO/IEC 17025 gefordert wird.

Als amtliches Kalibrierlaboratorium der Deutschen Akkreditierungsstelle DAkkS/DKD für die Messgröße Härte führt Bareiss im Rahmen der Messmittelüberwachung Kalibrierungen für den Bereich Werkstoffprüfmaschinen permanent im eigenen Labor oder vor Ort durch und erstellt hierfür amtliche Kalibrierscheine.

Ihr Peter Strobel,
Technischer Geschäftsführer, Leiter des Qualitätslabors

UNSER DIENSTLEISTUNGSSERVICE

KALIBRIERUNG - ERINNERUNGSSERVICE

WIR WERDEN BEI DER DEUTSCHEN AKKREDITIERUNGSSTELLE UNTER DEM BEREICH MECHANISCHE MESSGRÖSSEN-HÄRTE (WPM) GEFÜHRT.

Den Akkreditierungsumfang finden Sie im Produkt- und Anwendungsverzeichnis unter Kalibrierservice.

Um Ihnen die Arbeit zu erleichtern, erinnern wir Sie gerne rechtzeitig an die demnächst fällige Kalibrierung Ihrer Prüfeinrichtung.

LEIHGERÄTE

- für die Dauer der Servicearbeiten an Ihren Prüfgeräten
- zur Überbrückung bei kurzfristigen Engpässen in Ihrer Qualitätssicherung

WARTUNG

Wir bieten Ihnen die Möglichkeit einen Wartungsvertrag abzuschließen.

Damit erhalten Sie günstigere Konditionen, mit denen sich ein Vertrag für Ihr Unternehmen auch unter wirtschaftlichen Gesichtspunkten rechnet.

LOHNMESSUNG

LOHNMESSUNGEN MIT PROTOKOLL DER ANGELIEFERTEN PROBE.

Wenn Sie keine Prüfeinrichtung im Einsatz haben, aber dennoch Prüfprotokolle benötigen, senden Sie die Proben direkt zu Bareiss zur Lohnmessung.

Sie erhalten innerhalb kürzester Zeit Ihre Proben mit protokollierten Messergebnissen dokumentiert zurück.

berdischingen den unsere qualifizere

SCHULUNG

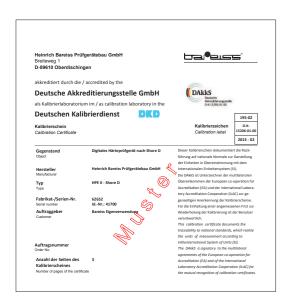
SCHULUNG

Schulung zum Thema Härteprüfung an Gummiund Kunststoffmaterialien

ZIELGRUPPE

Konstrukteure, Qualitätsprüfer und Anwender von Härteprüfgeräten

7IFI


Messfehler vermeiden durch richtiges Auflegen, Einbetten und Positionieren der Proben [Qualitätssicherung]

INDIVIDUALSCHULUNG

Sie möchten eine individuelle Schulung Ihrer Mitarbeiter? Gerne stellen wir für Sie eine auf Ihre Bedürfnisse abgestimmte Schulung zusammen.

KALIBRIERSERVICE

DAKKS/DKD KALIBRIERSCHEIN

	619, DIN EN ISO 868 durchs	ieführt.
per		
Sollmaß	Istmaß	Messunsicherheit
30°± 0,25°	30,041°	± 0,07°
Ø (1,25 ± 0,15) mm	Ø 1,216 mm	± 2,0 µm
Ø (0,10 ± 0,01) mm		± 4,0 μm
Ø (3,00 ± 0,10) mm	Ø 3,020 mm	± 0,01 mm
Ø (18,00 ± 0,50) mm	Ø 18,030 mm	± 0,05 mm
(2,50 ± 0,02) mm	2,504 mm	±3,0 µm
Sollwert	Istwert	Messunsicherheit
	[mm]	[µm]
	2 504	±3.0
		+3.0
		±3.0
		±3.0
		+3.0
		±3.0
	1.003	±3.0
	0.751	+3.0
	0.498	±3.0
	0.250	±3.0
0.000	0,000	±3,0
2	,	
Sollwert	Intrast	Messunsicherheit
[mN]		[mN]
± 222.5	[IIIN]	[ima]
		± 4,0
*****		± 4,0
		± 4,0
		± 4,0 ± 4.0
		± 4,0 ± 4.0
		±4,0 +4.0
		±4,0 +4.0
40050	39996,4 44435.9	± 4,0 ± 4.0
	30° 0.28° 0.15 mm 0 1.28 to 1.59 mm 0 1.28 to 1.59 mm 0 1.00 to 0.01 to 0.02 t	30°16.28° 30,64° 30,64° 30,64° 30,64° 30,64° 30° 61.28 in J. 28 in

PERMANENTES LABOR/VOR-ORT-KALIBRIERUNG

KALIBRIERGEGENSTAND	MESSGRÖSSE
Härteprüfer Shore, analog digital A, D, AM, M, A0, 00, 000, E, Härte L, L/c, Barcol	Messweg, Federkraft
Eindringkörper Shore A	Schaftdurchmesser b Kegelstumpf- durchmesser Kegelwinkel a
Druckplatte Shore A, D, AM, M, A0, 00, 000, IRHD N, L, M, H, Härte L, L/c, VLRH	Außendurchmesser Bohrungs- durchmesser
Eindringkörper Shore D, AM, M	Schaftdurchmesser b Spitzenradius r Kegelwinkel a
Härteprüfgerät IRHD N, L, M, H, VLRH	Messweg, Vorkraft, Hauptkraft, Gesamtkraft, Anpresskraft
Eindringkörper: IRHD N, L, M, H, Shore A0, 00, E, Härte L, L/c, Pusey & Jones, VLRH	Kugeldurchmesser
Messwegkontrollringe: Shore 20, 40, 60, 80	Messweg
Kontrolleinrichtung: Shore A, D	Federkraft
Eindringkörper: Shore 000	Kugelradius r
Eindringkörper: Barcol	Kegelstumpfdurchmesser, Kegelwinkel a
Druckplatte: Shore E	Druckplattenfläche, Bohrungsdurchmesser
Pusey & Jones	Messweg, Gesamtkraft
Referenzelastomerblöcke	Shore A, D, AM, M, A0, 00, 000, E, Härte L, L/c, IRHD N, L, H, M, VLRH, Pusey & Jones
Referenzplatte: Metall	Barcol
Kalibrierung: Verfahren	Brinell, Vickers
Kalibrierung : Verfahren	Rockwell
Härteprüfmaschinen Brinell, Vickers	Messweg
Härteprüfmaschinen Rockwell, Kugeldruck	Messweg
Härteprüfmaschinen, Kraftmesseinrichtung	Kraft

Download unter www.bareiss.de/service. Auszug aus unserem Kalibrierangebot

PRODUKT-/ANWENDUNGSVERZEICHNIS

HÄRTEPRÜFUNG

MESSMETHODE	NORMEN	ANWENDUNGSBEREICHE MATERIAL-DICKE mm Weichgummi, Elastomere, Naturkautschukprodukte, Neoprene, Gießharz, Polyester, Weich-PVC, Leder		SEITE	
Shore A	DIN EN ISO 868, DIN ISO 7619 ASTM D 2240			8, 9, 14, 15	
Shore A0, E L + L/c	DIN ISO 7619, ASTM D 2240	Schäume, weichelastische Werkstoffe, geschäumte Innenverkleidungen im Kfz., Lenkräder	6	8, 9	
M Shore A	Bareiss Norm	wie Shore A	0,5	14, 15	
Shore D	DIN EN ISO 868, DIN ISO 7619 ASTM D 2240	Hartgummi, harte Kunststoffmaterialien, Acrylglas, Polystyrol, steife Thermoplaste, Resopal, Druckwalzen, Vinyl-Platten, Cellulose-Acetat	yrol, steife Thermoplaste, Resopal, Druckwalzen,		
M Shore D	Bareiss Norm	wie Shore D	0,5	14, 15	
Shore B	ASTM D 2240	mittelharte Werkstoffe aus Gummi, Plattenware	mittelharte Werkstoffe aus Gummi, Plattenware 6		
Shore C	ASTM D 2240	Plastik und mittelharte Gummiwerkstoffe	6	8, 9, 14, 15	
Shore D0	ASTM D 2240	Plastik und mittelharte Gummiwerkstoffe	und mittelharte Gummiwerkstoffe 6		
Shore 0	ASTM D 2240	weichelastische Stoffe, Druckrollen mittelfeste, textile Gewebe, Nylon, Orlon, Perlon, Rayon			
Shore 00 000	ASTM D 2240	Moos- und Zellgummi, Schaumgummi	mmi 6		
Shore 000S	ASTM D 2240	Silikon, gel-ähnliche Materialien	ilikon, gel-ähnliche Materialien 6		
Shore AM, M	DIN ISO 7619, ASTM D 2240	Weichgummi, Elastomere, Naturkautschukprodukte	Weichgummi, Elastomere, Naturkautschukprodukte 1,25, 1,50		
Asker C	SRIS 0101	wie Shore A	e Shore A 6		
Asker CS	SRIS 0101	wie Shore D	wie Shore D 6		
Asker F	Werksnorm	Schäume		8, 9	

MESSMETHODE	NORMEN	ANWENDUNGSBEREICHE MATERIAL-DICKE mm		SEITE	
VLRH	DIN ISO 27588	Moos- und Zellgummi, Schaumgummi, Silikon, gel-ähnliche Materialien	2	13, 14	
IRHD M	DIN ISO 48	Weichgummi, hochelastische Werkstoffe, plastisch verformbare Stoffe			
IRHD N	DIN ISO 48	Weichgummi, hochelastische Werkstoffe, plastisch verformbare Stoffe			
IRHD L	DIN ISO 48	Moos- und Zellgummi, Schaumgummi, Silikon, 10 – 12 gel-ähnliche Materialien		13, 14	
IRHD H	DIN ISO 48	harte Materialien wie Shore D	6 – 10	13, 14	
Pusey & Jones	ISO 7267-3, ASTM D 531	gummi- oder gummiähnliche Materialien, Gummiwalzen der Papierindustrie	13	10	
Barcol	DIN EN 59, ASTM D 2583	glasfaserverstärkte Kunststoffe, Duroplaste, harte Thermoplaste, Alu etc.	1,5	10	
Newton	Bareiss Norm	Gelatine, Gelatinekapseln, Knetmasse		22	
Asphalt 3106	DIN 1996-13	Asphalt		21	
Baugips 3106	DIN EN 13279	Baugips		21	
Kugeldruck 3106	DIN EN ISO 2039-1	Kunststoffmaterialien		21	
Rockwell 3106	DIN 51917, DIN EN ICE 413	Kohlestoffmaterialien		21	
Rockwell 3106	DIN EN ISO 6508-2, ASTM E 18, ASTM D 785	Metall		21	
Vickers	DIN ISO 6507, CHD – DIN EN 2639 CDD (EHT), DIN 10328, DS (RHT), DIN 50190, Teil 3 (NHT)	Kleinkraft: Belastungsstufen von HV 0,1 – HV 10 Mikrohärte: Belastungsstufen von HV 0,01 – HV 2		24, 25	
Abriebprüfung	DIN ISO 4649, ASTM D 5963	Bestimmung des Widerstandes von Elastomeren geben Abrieb an Gummiprodukten wie z.B. Reifen, Fließbänder, Schläuche, Schuhe, Bodenbeläge		20	
Elastizitätsprüfung Kugel-Rückprall	DIN EN ISO 8307, ASTM D 3574	Rückprallelastizität an polymeren Schaumstoffen	50	16	

MESSMETHODE	NORMEN	ANWENDUNGSBEREICHE	MATERIAL-DICKE	SEITE
Elastizitätsprüfung Rückprall	DIN 53512, DIN 53573, ISO 4662, ASTM D 1054	Bestimmung des Elastizitätsverhaltens von Elastomeren Probendicke >12 mm	mm 12	17
kal-rock		Kalibriereinrichtung für die Tiefenmesseinrichtung von Härteprüfmaschinen		21

ANDERE PRODUKTE

PROBENVORBEREITUNG	NORMEN	ANWENDUNGSBEREICHE	
Stanzpressen Stanzeinrichtungen Kreisschneidevorrichtung	Diverse Normen	Manuelles Stanzen von ringförmigen und anderen Proben aus Elastomeren. Ausschneiden des stabsförmigen Probekörpers Ø 16,2 mm	18, 19
Zentriereinrichtungen Positioniereinrichtung		Exakte Zentrierung an Schläuchen, O-Ringen, optische und automatische Zentrierung Zweipunkt- und Dickenmessung	13
Kontrolleinrichtung	DIN ISO 7619, DIN EN ISO 868, ASTM D 2240	Überprüfung der Federcharakteristik	23
Kontrollring		Überprüfung des Messweges	23
Referenzplatten	DIN ISO 7619, DIN ISO 48, DIN EN 59, ASTM D 2583	Vergleichen des Härtewertes Shore, IRHD, Barcol, Pusey & Jones	23
Software		Datenverarbeitung	26
Kalibrierservice	DAkkS / DKD	Deutsche Akkreditierungsstelle Permanentes Labor, Vor-Ort-Kalibrierung Amtliche Kalibrierscheine Akkreditierumfang	4
Technische Daten			27

18

18

21

22

21

BAREISS PRODUKTE KURZBEZEICHNUNGEN

10 V-Test II Basic

KURZBEZEICHNUNG SEITE HP 8 BS 61 II 9 SP 1000 HPE II 8 IRHD Compact III 12 SP 4000 HPE II L, HPE II KFZ Interieur 9 digi test II 14 kal-rock

11 Centrofix, Barofix, Barofix II 13 Gelomat II

24 3106

Rückprallelastizität an polymeren Schaumstoffen 50 16 HPE II Pusey & Jones 10

HPE II Shore AM, Shore M

HPE II Barcol

HP/HPE II

MESSMETHODE

Shore A/A0/B/0/C/D/D0/00/000/000S/E/L/c/Asker C/CS/F HPE II KFZ Interieur

Ausstattungsmöglichkeit: Eindringkörper: Kugel 10 oder 15 mm

NORMEN

DIN ISO 7619/DIN EN ISO 868/NF EN ISO 868/ASTM D 2240/ SRIS 0101

ANWENDUNGSBEREICHE

Die Härteprüfer dienen zur Härteermittlung an Verbundmaterialien, weichelastischen Materialien, Elastomeren und Kunststoffen.

Für eine zuverlässige Härteprüfung nach Norm ist ein glatter und ebener Probekörper von ≥35 mm Durchmesser und ≥6 mm Materialstärke vorgeschrieben.

SONDERZUBEHÖR

- DAkkS/DKD-Kalibrierschein zu Messgerät
- Prüfständer BS 61 II je nach Messmethode
- Aufsetzbares Belastungsgewicht 4,0 kg für Shore D-Prüfungen in Verbindung mit dem Prüfständer
- Prismen 120°/150° für HPE II
- Kontrolleinrichtung zur Überprüfung der Federkraft A/D
- Überprüfung des Messweges mit
- Kontrollring 20/40/60/80 Shore für Messverfahren Shore A/B/0/00/C/D0/A0/E/Asker C/Asker CS
- DAkkS/DKD-Kalibrierschein zu Kontrollringe
- Software

Messdatenerfassungs- und Analysesystem

Referenzelastomerblöcke einzeln/3er Satz/6er Satz mit DAkkS/DKD-Kalibrierschein

STROMVERSORGUNG:

Lithium-Batterie

BETRIEBSDAUER:

ca. 2000 Stunden

SCHUTZART:

IP 30

AUFLÖSUNG:

0.1 Shore, KFZ Interieur – Kugel 15,

0.01 KFZ Interieur – Kugel 10

MESSBEREICHE: Shore/Asker/KFZ

DATENAUSGANG:

RS 232 - 9600 Baud, 1 Startbit,

8 Datenbits, 1 Stopbit

MESSWERTSPEICHER:

300 Messwerte

MASSE (LxBxH)

HP: 75 x 65 x 25 mm HPE II: 160 x 70 x 40 mm

Koffer: 240 x 210 x 55 mm

BS61 II: 160 x 200 x 360 mm

GEWICHT

HP: 0,23 kg

HPE II: je nach Ausstattung 0,4 - 0,6 kg Koffer: 0,50 kg

BS61 II: 6,0 kg

Prüfständer BS 61 II mit HPE II und Belastungsgewicht

HP II KFZ Interieur

Kontrollring 40 Shore mit Basisplatte

HPE II L

Prismen

HPE II BARCOL/PUSEY & JONES

NORMEN

BARCOL DIN EN 59/ASTM D 2583

PUSEY & JONES ISO 7267-3/ASTM D 531

ANWENDUNGSBEREICHE

BARCOL

Die Härteprüfer dienen zur Härteermittlung an glasfaserverstärkten Kunststoffen, Duroplasten, harten Thermoplasten, Alu etc.

PUSEY & JONES

Die Härteprüfer dienen zur Härteermittlung an gummi- oder gummiähnlichen Materialien und Gummiwalzen in der Papierindustrie.

SONDERZUBEHÖR

- DAkkS/DKD-Kalibrierschein zu Messgerät
- Prüfständer zu Härteprüfer Barcol
- Software Messdatenerfassungs- und Analysesystem
- Referenzblock mit DAkkS/DKD-Kalibrierschein

HPE II Barcol

STROMVERSORGUNG:

Lithium-Batterie 3,6 V, Größe ½ AA

BETRIEBSDAUER:

ca. 2000 Stunden SCHUTZART:

IP 30

AUFLÖSUNG:

± 1 BARCOL

1 Pusey & Jones

MESSBEREICHE:

BARCOL/Pusey & Jones

ANZEIGEBEREICH:

Barcol: 0 - 100 Pusey & Jones: 0 - 300

DATENAUSGANG:

RS 232 - 9600 Baud, 1 Startbit.

8 Datenbits, 1 Stopbit

MESSWERTSPEICHER:

300 Messwerte MASSE (LxBxH)

Barcol: 160 x 70 x 40 mm

Pusey & Jones: 250 x 90 x 130 mm

Koffer: 240 x 210 x 55 mm

Barcol: 0,37 kg

Pusey & Jones: 3,3 kg Koffer: 0,50 kg

GEWICHT

HPE II Pusey & Jones

HPE II SHORE AM/M

NORMEN

DIN ISO 7619/ASTM D 2240

ANWENDUNGSBEREICHE

Härteermittlung an Weichgummi, Elastomeren, Naturkautschukprodukten Mindestmaterialstärke bei Shore AM = 1,25 mm

Mindestmaterialstärke bei Shore M = 1.5 mm

GRUNDAUSSTATTUNG

 Prüfständer mit konstanter Absenkgeschwindigkeit max. 3.2 mm/s; automatische Kraftaufbringung

Messeinrichtung: HPE II Shore AM/HPE II Shore M

SONDERZUBEHÖR

- DAkkS/DKD-Kalibrierschein zu Messgerät
- Barofix Schnellzentriereinrichtung mit Niederhalter und Auflageplatte für O-Ringe
- Centrofix Schnellzentriereinrichtung für Schläuche
- Software Messdatenerfassungs- und Analysesystem Referenzelastomerblöcke einzeln/3er Satz/6er Satz

mit DAkkS/DKD-Kalibrierschein

SCHUTZART:

IP 30

AUFLÖSUNG:

0.1 Shore MESSBEREICHE:

Shore

DATENAUSGANG:

RS 232/100 – 240 VAC; 50/60 Hz

MESSWERTSPEICHER:

300 Messwerte

MASSE (LxBxH)

Prüfständer: 160 x 200 x 360 mm Messeinrichtung: 160 x 80 x 140 mm

GEWICHT

Prüfständer: 3,5 kg Messeinrichtung: 0,7 kg

HPE II Shore AM/M

IRHD COMPACT III

NORMEN

DIN ISO 48/NFT 46-003/JIS K 6253/BS 903 Part A26

ANWENDUNGSBEREICHE

Die Messeinrichtungen IRHD M und IRHD N dienen zur Härteermittlung an Weichgummi, hochelastischen Werkstoffen und plastisch verformbaren Stoffen.

SONDERZUBEHÖR

• DAkkS/DKD-Kalibrierschein zu Messgerät

• Vergrößerungsglas mit 2,5 facher Vergrößerung flexibel, schwenkbar

• Eindringkörper IRHD M/IRHD N mit DAkkS/DKD-Kalibrierschein

 Barofix Schnellzentriereinrichtung mit Niederhalter und Auflageplatte für O-Ringe

Centrofix Schnellzentriereinrichtung für Schläuche

• Software Messdatenerfassungs- und Analysesystem

 Referenzelastomerblöcke einzeln/3er Satz/6er Satz mit DAkkS/DKD-Kalibrierschein

SPANNUNGSVERSORGUNG:

Steckernetzteil

INPUT: 100 – 240 VAC; 50/60 Hz

OUTPUT: 3,3 VDC SCHUTZART:

IP 30

AUFLÖSUNG:

0.1 IRHD

MESSBEREICHE:

IRHD M/IRHD N
MESSZEIT

1 – 99 s

DATENAUSGANG:

V24 RS 232 - 9600 Baud, 1 Startbit, 8 Datenbits, 1 Stopbit

MASSE (LxBxH)

Prüfständer: 200 x 250 x 570 mm IRHD M: 160 x 100 x 140 mm IRHD N: 100 x 100 x 150 mm

GEWICHT

Prüfständer: 9,0 kg Messeinrichtung: 0,7 kg IRHD M: 1,4 kg

IRHD N: 1,3 kg

rung /DKD-Kalibrierschein erhalter und aläuche sesystem /Ger Satz

IRHD Compact III

SCHNELLZENTRIER-/ POSITIONIEREINRICHTUNGEN

ANWENDUNGSBEREICHE

Mit Hilfe der Einrichtung wird die Probe exakt unter dem Eindringkörper positioniert. Sonderausführung zur Aufnahme von komplizierten Proben sind ebenfalls lieferbar.

CENTROFIX

Schnellzentrierung von Schläuchen

BAROFIX

Schnellzentrierung von O-Ringen mit einer Schnurstärke von 0.6-5.0 mm; 0.6-8.0 mm; 4.0-20.0 mm; vergrößerte Auflageplatte und Niederhalter

BAROFIX

Positioniereinrichtung mit optischer und automatischer Zentrierung für planparallele Platten/Zwei-Punkt-Messung und Dickenmessung an O-Ringen.

Centrofix

Barofix

Barofix

Sonderausführung

Sonderausführung

Sonderausführung

DIGI TEST II

MESSMETHODE

Shore A/A0/B/0/C/D/D0/00/000/000S/E/M Shore A/M Shore D/Shore AM/Shore M/ IRHD L/IRHD N/IRHD M/IRHD H/VLRH

NORMEN

DIN ISO 7619/DIN EN ISO 868/ASTM D 2240/DIN ISO 48/ DIN ISO 27588/NFT 46-003/JIS K 6253

ANWENDUNGSBEREICHE

In der Gummi- und Kunststoffherstellung sowie in der Qualitätskontrolle ist man heute dazu übergegangen, anstelle der Normproben, Härteprüfungen an Fertigteilen vorzunehmen.

Das digi test II arbeitet vollautomatisch und ist dadurch weitgehend bedienerunabhängig. Die Messeinrichtungen dienen zur Härteermittlung an allen elastischen Materialien, Polymeren und Elastomeren.

GRUNDAUSSTATTUNG

Die Grundausstattung setzt sich aus Prüfständer, Aufnahmearm sowie der Elektronikeinheit zusammen.

Die Messeinrichtungen werden in den Aufnahmearm gesteckt. Die Elektronikeinheit erkennt automatisch die Messmethode. Messzeit und Methode werden im Display angezeigt.

Folgende Messeinrichtungen sind erhältlich: Shore A/B/O, Shore D/C/DO, Shore OO, M Shore A, M Shore D, Shore AM/M, IRHD L, IRHD N, IRHD M, IRHD H, VLRH

SPANNUNGSVERSORGUNG:

100 – 240 VAC; 50/60 Hz

SCHUTZART:

IP 30

AUFLÖSUNG:

0.1

MESSBEREICHE:

IRHD M/IRHD N

MESSZEIT:

1 – 99 s

DATENAUSGANG:

DAI

V24 RS 232 - 9600 Baud, 1 Startbit, 8 Datenbits, 1 Stopbit

ANZEIGE:

LCD-Grafikdisplay (240x128 Pixel) mit LED-Beleuchtung (einstellbar)

MASSE (LxBxH)

Prüfständer: 200 x 250 x 570 mm IRHD M: 160 x 100 x 140 mm IRHD N: 100 x 100 x 150 mm

GEWICHT

Prüfständer: 9,0 kg IRHD M: 1,4 kg IRHD N: 1,3 kg

digi test II Grundausstattung

SONDERZUBEHÖR

- DAkkS/DKD-Kalibrierschein zu Messgerät
- Vergrößerungsglas mit 2,5-facher Vergrößerung flexibel, schwenkbar
- Eindringkörper IRHD/M/N/L/H/VLRH/ Shore mit DAkkS/DKD-Kalibrierschein
- Barofix Schnellzentriereinrichtung mit Niederhalter und Auflageplatte für O-Ringe
- Barofix II Positioniereinrichtung mit optischer und automatischer Zentrierung für planparallele Platten / O-Ringe
- Modul Zweipunktmessung und Dickenmessung an O-Ringen
- Centrofix Schnellzentriereinrichtung für Schläuche
- Software Messdatenerfassungs- und Analysesystem
- Referenzelastomerblöcke einzeln/3er Satz/6er Satz mit DAkkS/DKD-Kalibrierschein

Schneidevorrichtung

digiChamber

digi test II mit IRHD M und Barofix

KUGEL-RÜCKPRALL-TESTER

NORMEN

DIN EN ISO 8307/ASTM D 3574

ANWENDUNGSBEREICHE

Verfahren zur Bestimmung der Rückprall-Elastizität an polymeren Schaumstoffen.

GRUNDAUSSTATTUNG

Prüfständer mit Fallrohr 500 mm kombiniert mit Elektronikeinheit. Das 2-zeilige LC-Display zeigt den Messwert und den Medianwert in % an.

SONDERZUBEHÖR

- Werkskalibrierschein zu Messgerät
- Fallrohr EKF Fallhöhe 460 mm mit Befestigungsarm und Magnetsystem
- Software Messdatenerfassungs- und Analysesystem

SPANNUNGSVERSORGUNG:

Steckernetzteil

INPUT: 100 – 240 VAC; 50/60 Hz

SCHUTZART:

Elektronikeinheit IP 30,

Fallrohr IP 20 MESSBEREICHE:

Kugel-Rückprall-Elastizität

MESSZEIT:

1 – 99 S

DATENAUSGANG:

V24 RS 232 - 9600 Baud, 1 Startbit,

8 Datenbits, 1 Stopbit

MESSWERTSPEICHER:

300 Messwerte

MASSE (LxBxH)

Prüfständer: 200 x 250 x 600 mm Elektronikeinheit: 200 x 171 x 90 mm

GEWICHT

Prüfständer: 9,0 kg

Exposis 8 14.22 Extras Fortig Extras Fortig Extras Fortig Extra forti

Kugel-Rückprall-Tester

RÜCKPRALL-ELASTIZITÄTSPRÜFGERÄT II

MIT AUTOMATION / TEMPERIERMODUL

NORMEN

DIN 53512/DIN 53573/ISO 4662/ASTM D 1054/NF ISO 4662

ANWENDUNGSBEREICHE

Verfahren zur Bestimmung des Elastizitätsverhaltens von Elastomeren in einem Härtebereich von 30 – 85 Shore A bzw. IRHD N.

GRUNDAUSSTATTUNG

Prüfgerät mit integrierter Reibungskontrolle der Lagerung, kombiniert mit Elektronikeinheit.

SONDERZUBEHÖR

- Werkskalibrierschein zu Messgerät
- Ambossplatte
- Temperiermodul

Rückprall-Elastizitätsprüfgerät mit Probenheizung

Temperierbereich für eine Probe: ab 10 °C über Raumtemperatur bis max. 100 °C an Auflagefläche. Eine zweite Probe kann parallel vorkonditioniert werden. Probendurchmesser 29 – 53 mm, Probendicke 12 mm

SPANNUNGSVERSORGUNG:

INPUT: 100 – 240 VAC; 50/60 Hz

SCHUTZART:

IP 30

AUFLÖSUNG:

0.1 %

MESSBEREICHE:

RÜCKPRALL-ELASTIZITÄT

DATENAUSGANG:

V24 RS 232 - 9600 Baud, 1 Startbit,

8 Datenbits, 1 Stopbit **PENDELLÄNGE**:

ENDELLAI

200 mm

FALLWINKEL DES PENDELS:

90°

AUFTREFFGESCHWINDIGKEIT:

2 m/s

EINSTELLBEREICH FÜR PROBENDICKE:

0 ... 60 mm

SKALENWERT

.

MASSE (LxBxH)

Rückpralleinrichtung:

200 x 250 x 570 mm

Elektronikeinheit:

200 x 171 x 90 mm

GEWICHT

GEWICHI

Rückpralleinrichtung: 33 kg Elektronikeinheit: 2 kg

Temperiermodul: 3 kg

Rückprall-Elastizitätsprüfgerät II

STANZPRESSEN SP 1000 II/4000 II

ANWENDUNGSBEREICHE

Manuelles Stanzen von ringförmigen, stabförmigen und anders geformten Proben aus Elastomeren.

STANZEINRICHTUNGEN

FORM

NORM

ISO 37/DIN 53504/ASTM D 412

ISO 37/DIN 53504/ASTM D 412

ISO 34-1

ISO 34-1/ASTM D 624

ISO 34-1/ASTM D 624

ASTM D 624

ISO 34-2/816

Beispiele für Stanzeinrichtungen – weitere auf Anfrage!

SONDERZUBEHÖR

- Schneideunterlagen aus Hartpappe
- Stanzeinrichtung mit Halter und Auswerfer

STANZDRUCK:

SP 1000 II: Max. 24 mm

AUSLADUNG:

SP 4000 II: Max. 60 mm SP 1000 II: Max. 60 mm

AUFLAGETISCH:

SP 4000 II: Max. 120 x 330 mm SP 1000 II: Max. 175 x 270 mm

MASSE (LxBxH)

SP 4000 II: 300 x 300 x 450 mm SP 1000 II: 270 x 270 x 600 mm

GEWICHT

SP 4000 II: 50 kg SP 1000 II: 20 kg

Stanzeinrichtung mit Halter und Auswerfer

SP 1000 II SP 4000 II

ABRIEBPRÜFMASCHINE

NORMEN

DIN ISO 4649/NF ISO 4649/ASTM D 5963

ANWENDUNGSBEREICHE

Bestimmung des Widerstandes von Elastomeren gegen Abrieb an Gummiprodukten wie z.B. Reifen, Fließbänder, Schläuche, Schuhe, Bodenbelege etc.

SONDERZUBEHÖR

- Erhöhung der Probenandruckkraft um 10 N
- Abriebstahlprobe
- Kreisschneidvorrichtung bestehend aus: Kreisschneidmesserhalter, Morsekegelschaft MK2, Kreisschneidmesser Ø 16,2 mm
- Staubschutzhülle für Abriebprüfmaschine
- Referenzplatte zu Abriebprüfmaschine nach ISO 4649,
 ASTM D 5963 (DIN 53516), Maße: 181 x 181 x 8 mm, 365 g
- Prüfschmirgelbogensatz ungeprüft 474 x 402 mm, bestehend aus 5 Bögen, inkl. 1 Rolle doppelseitiges Klebeband
- Reinigungseinrichtung incl. 10 Bürsten incl. Führungsstange und Befestigungsschrauben
- Staubsauger mit Adapter für Reinigungseinrichtung
- elektronische Analysenwaage auf Anfrage

SPANNUNGSVERSORGUNG:

100-240 V - 50/60 Hz - 100 VA

MESSBEREICHE:

Abrieb

ABRIEBWEG:

40 / 20 m

MASSE (LxBxH)

760 x 360 x 320 mm **GEWICHT**

50,0 kg

Kreisschneidvorrichtung

Belastungseinrichtung inkl. Spanneinrichtung für die Abriebprobe

Waage

Abriebprüfmaschine

3106

ANWENDUNGSBEREICHE

Härteprüfgerät zur Bestimmung der Kugeldruckhärte Module wählbar –

- HPU 1 Grundausstattung, Auswertung Kugeldruckhärte über Normtabelle, Härteprüfung an Asphalt DIN 1996-13;
 Bestimmung der Kompression und Wiederausdehnung ASTM F 36-99; Belastungsstufe 49 N und Vorkraft 9,81 N
- HPU 2 Modul Kugeldruckhärte nach DIN EN ISO 2039-1
- HPU 3 Modul Rockwellhärte an Metall nach DIN EN ISO 6508-2/ASTM E 18/ASTM D 785
- HPU 4 Modul Rockwellhärte an Kohlenstoffmaterialien nach DIN 51917/DIN EN IEC 413
- HPU 5 Modul Härte an Baugipsen nach DIN EN 13279

3106

SPANNUNGSVERSORGUNG:

Steckernetzteil INPUT: 100 – 240 VAC;

50/60 Hz, OUTPUT: 3,3 VDC **SCHUTZART:**

IP 50

AUFLÖSUNG:

0.001 mm

ANZEIGE:

LC-Display, Punktmatrix,

Format 2 x 16

DATENAUSGANG:

V24 RS 232 - 9600 Baud, 1 Startbit, 8 Datenbits, 1 Stopbit

MESSZEIT:

1 - 99 s

GEWICHT

70 kg

KAL-ROCK

ANWENDUNGSBEREICHE

Messeinrichtung zur Kalibrierung der Eindringtiefenmesseinrichtung von Rockwell-Härteprüfmaschinen (patentiert) mit DAkkS/DKD Kalibrierschein.

kal-rock

SPANNUNGSVERSORGUNG:

100 – 240 VAC; 50/60 Hz

SCHUTZART:

IP 30

AUFLÖSUNG:

0.1 µm

${\sf MESSBEREICHE:}$

Eindringtiefen-Messung DATENAUSGANG:

DAILINAOJOANO

USB V24 RS 232 - 9600 Baud, 1 Startbit, 8 Datenbits, 1 Stopbit

LÄNGEN-FEINVERSTELLUNG:

Messeinrichtung: ± 0,4 mm

ANZEIGEGENAUIGKEIT:

Messeinrichtung: ± 0,2 μm MASSE (LxBxH)

Elektronikeinheit: 290 x 260 x 210 mm

Messeinrichtung: Ø 90 mm,

Länge 125 mm

GEWICHT

Elektronikeinheit: 2,5 kg Messeinrichtung: 3,2 kg

GELOMAT II

ANWENDUNGSBEREICHE

Modulares, digitales Härteprüfsystem – zur Härte- und Festigkeitsermittlung an weichelastischen Stoffen wie Gelatine, Gelatinekapseln, Knetmasse etc.

SONDERZUBEHÖR

- Centrofix zur exakten Zentrierung von Gelatinekapseln vorbereitet für die Aufnahme einer Schablone
- Schablone drehbar zu Centrofix für verschiedene Gelatine-
- Werkskalibrierschein zu Messeinrichtung 0-2 N/0-20 N
- Referenzplatte für 0-20 N

Centrofix

Gelomat

SPANNUNGSVERSORGUNG:

Steckernetzteil

100 – 240 VAC; 50/60 Hz

SICHERUNG:

2 Stk. Feinsicherungen 3.15 A träge (3.15 AT)

LEISTUNGSAUFNAHME:

MAX. 20 VA **SCHUTZART:**

IP 30

ANZEIGE:

LC-Grafikdisplay (240x128 Pixel) mit LED-Beleuchtung (einstellbar)

AUFLÖSUNG:

MESSMETHODEN:

0-20 N/0-2 N

DATENAUSGANG:

USB/RS 232 - 9600 Baud, 1 Startbit, 8 Datenbits, 1 Stopbit

MASSE (LxBxH)

Prüfständer: 200 x 250 x 570 mm Elektronikeinheit: 200 x 171 x 90 mm

GEWICHT

Prüfständer: 9 kg Elektronikeinheit: 2kg

Rotation

KONTROLLEINRICHTUNG

FÜR MANUELLE ANALOGE UND DIGITALE HÄRTEPRÜFER

ANWENDUNGSBEREICHE

Mit der Kontrolleinrichtung wird die Federcharakteristik der Härteprüfer HP/HPE II nach Shore überprüft.

SONDERZUBEHÖR

- Ausgleichsgewicht und Schiebegewicht Shore D
- DAkkS/DKD-Kalibrierschein für Federkraft Shore A/Shore D
- Gewicht: 7 kg

Kontrolleinrichtung

KONTROLLRINGE

MIT DAKKS/DKD-KALIBRIERSCHEIN

ANWENDUNGSBEREICHE

Mit den Kontrollringen wird der Messweg der Härteprüfer HP/HPE II nach 20/40/60/80 Shore überprüft.

REFERENZELASTOMERBLÖCKE

MIT DAKKS/DKD-KALIBRIERSCHEIN

ANWENDUNGSBEREICHE

Referenzelastomerblöcke werden zur Sicherstellung der Messfähigkeit der Messeinrichtungen nach Shore/IRHD/Gelomat/ Pusey & Jones während den Kalibrierintervallen verwendet. Die Referenzblöcke sind in einer Fassung aus Metall eingebettet.

Lieferumfang:

einzeln, 3 oder 6 Stück incl. DAkkS/DKD-Kalibrierschein.

V-TEST II BASIC

MESSMETHODE

Vickers

NORMEN

DIN EN ISO 6507

ANWENDUNGSBEREICHE

Verfahren zur Härteermittlung an Metallen (Einsatz- und Randhärte, auch dünnwandige) sowie Keramiken.

GRUNDAUSSTATTUNG

Manuell positionierbare Z-Achse am Prüfständer Manuell positionierbare X-Achse am Tisch Magnetischer Auflagetisch Ø 100 mm Kamera ½" s/w digital mit Zoomeinrichtung Mikroobjektiv 20-fach mit Beleuchtung - andere Objektive auf Anfrage

SONDERZUBEHÖR

- Tisch X-Y manuell, 25 x 25 mm geschlossen, Belastung bis 10 kg ausgestattet mit zwei Messschrauben: wahlweise je eine Analog- und Digitalmessschraube oder alternativ zwei Digitalmessschrauben
 - » Messschraube analog Bereich 0-25 mm, Ablesung 0,01
 - » Messschraube digital Bereich 0-25 mm, Auflösung 0,001 für Härteverlauf
- Probenaufnahme für Rundproben ab Ø30 Ø50 mm, Sondergrößen auf Anfrage
- Schraubstock zentrisch spannend Ausstattung mit 1 Satz Spannbacken
- Auswertesoftware Hardsoft mit Dongle Härteprüfung unter WIN XP/Vista/WIN 7
- Härtevergleichsplatten auf Anfrage
- DAkkS/DKD Kalibrierschein für Kleinkraft / Mikrohärte -Prüflaststufen HV
- Eindringkörper Vickers 136° incl. DAkkS/DKD-Kalibrierschein

SPANNUNGSVERSORGUNG:

Steckernetzteil

SCHUTZART:

INPUT: 100 – 240 VAC; 50/60 Hz

OUTPUT: 12 VDC 2,5 A

IP 50

MESSMETHODEN:

Vickers - Kleinkraft

Vickers - Mikrohärte

PRÜFLASTSTUFEN:

Kleinkraft: Belastungsarm HV 0,1/0,2/0,3/0,5/1,0/2,0/3,0/5,0/10,0

Mikrohärte: Belastungsarm

HV 0,01/0,02/0,05/ 0,1/0,2/0,3/1,0/2,0

AUSLADUNG:

200 mm

DATENAUSGANG:

V24 RS 232 - 9600 Baud, 1 Startbit,

8 Datenbits, 1 Stopbit

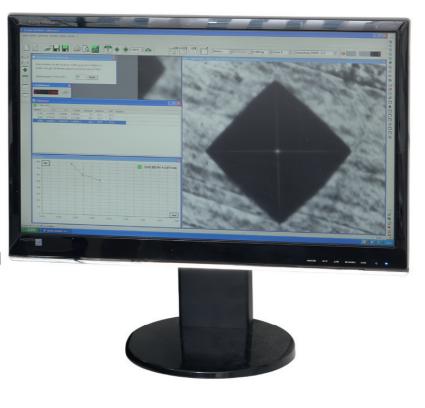
MASSE (LxBxH)

450 x 490 x 570 mm

GEWICHT

ca. 35 kg

HVWA 06 - TRAGBAR


GRUNDAUSSTATTUNG

Belastungen von HV 0,025 bis HV 0,1 Analoges Härtemessmikroskop mit Höhentrieb Automatische Belastungssteuerung (Be- und Entlastung) Focusebene entspricht Idealabstand Diamant-Probe Integrierte Libelle zum Ausrichten des Messgerätes Bewegliche Füße mit rutschfestem Dämpfungselement MASSE (LxBxH)
500 x 400 x 400 mm
GEWICHT
ca. 12 kg

Vickers HVWA 06 tragbar zur Ermittlung der Vickershärte an beschichteten Oberflächen

V-Test II Basic

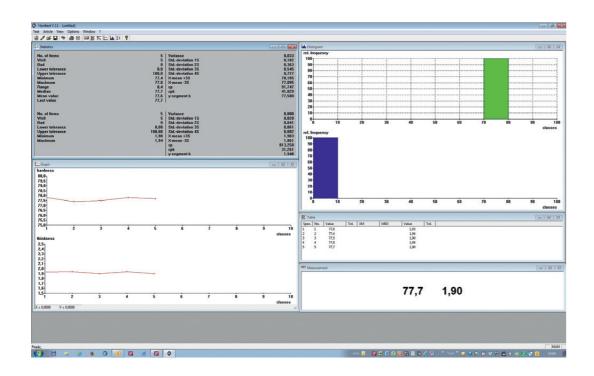
 \sim 25

SOFTWARE HARDTEST

DAS PRÜF- UND AUSWERTEPROGRAMM HARDTEST V 2.1 FÜR DIE HÄRTEPRÜFUNG / HYSTERESEMESSUNG MIT BAREISS-HÄRTEPRÜFGERÄTEN

ANWENDUNGSBEREICHE

Verwendbar für Bareiss-Härteprüfgeräte mit USB-Schnittstelle und serieller Schnittstelle.


FUNKTIONEN

Das Programm enthält folgende Funktionen für die Dokumentation der Messwerte:

- Anzeige des aktuellen Härtewertes.
- Anzeige aller Härtewerte einer Messreihe.
- Markierung der Messwerte außerhalb der Toleranzgrenzen (<, >).
- Anzeige aller aktivierten Statistikwerte auf einen Blick.
- Berechnung von Mittel- und Medianwert.
- Darstellung der Messreihen als Diagramm und Histogramm.
- Darstellung des Rückstellverhaltens von Materialien über eine Hysteresekurve.

WEITERE FUNKTIONEN:

- 32-Bit Programm, betriebsfähig ab Windows 7.
- Symbolleiste für den schnellen Zugriff auf Menü-Befehle.
- Ausführliche Hilfe-Informationen.
- Folgende Programmsprachen sind standardmäßig vorhanden: deutsch, englisch und französisch. Optional ist eine zusätzliche Sprache implementierbar.
- Messreihen können unterbrochen und zu einem späteren Zeitpunkt fortgesetzt werden.
- Messwerte sind über die Zwischenablage oder als Tastaturcode in Fremd-Programme exportierbar.

TECHNISCHE DATEN

MESSMETHODE	FEDERKRAFT	ANPRESSKRAFT	EINDRINGKÖRPER	DRUCKPLATTE	MESSWEG	MESSBEREICH
Shore A/DIN ISO 7619/EN ISO 868	8050 mN	1 kg	35°	Ø 18 mm	2,5 mm	0 – 100
S. AM/M/DIN ISO 7619/ASTM D 2240	764 mN	250 g	30°	Ø 9 mm	1,25 mm	0 – 100
Shore E/ASTM D 2240	8050 mN	1 kg	Ø 5 mm	≥ 500 mm²	2,5 mm	0 – 100
Shore A0/DIN ISO 7619	8050 mN	1 kg	Ø 5 mm	≥ 500 mm²	2,5 mm	0 – 100
L/L/c	8050 mN	1 kg	Ø 5 mm	Ø 18 mm	2,5 mm	0 – 100
Shore D/DIN ISO 7619/EN ISO 868	44450 mN	5 kg	30°	Ø 18 mm	2,5 mm	0 – 100
Shore B/ASTM D 2240	8050 mN	1 kg	30°	Ø 18 mm	2,5 mm	0 – 100
Shore C/ASTM D 2240	44450 mN	5 kg	35°	Ø 18 mm	2,5 mm	0 – 100
Shore D0/ASTM D 2240	44450 mN	5 kg	3 / 32"	Ø 18 mm	2,5 mm	0 – 100
Shore 0/ASTM D 2240	8050 mN	1 kg	3 / 32"	Ø 18 mm	2,5 mm	0 – 100
Shore 00 / ASTM D 2240	1111 mN	400 g	3 / 32"	≥ 500 mm²	2,5 mm	0 – 100
Shore 000 / ASTM D 2240	1111 mN	400 g	r = 6,35	≥ 500 mm²	2,5 mm	0 – 100
Shore 000 S/ASTM D 2240	1.932 mN	400 g	r = 10,70	≥ 500 mm²	5,0 mm	0 – 100
M Shore A/Bareiss Norm	108 mN	235 mN	30°	Ø 6 mm	1 mm	0 – 100
M Shore D/Bareiss Norm	9213 mN	-	30°	-	0,5 mm	0 – 100
Asker C/SRIS 0101	8385 mN	1 kg	Ø 5,08 mm	Ø 5,4 mm	2,5 mm	0 – 100
Asker F/Werksnorm	4295 mN	0,5 kg	Ø 25,2 mm	Ø 80 mm	2,5 mm	0 – 100
Barcol/DIN EN 59/ASTM D 2583	71,3 N	10 kg	26°	Ø 2 mm	0,76 mm	0 – 100
MESSMETHODE	GESAMTKRA	FT ANPRESSKRAFT	EINDRINGKÖRPER	DRUCKPLATTE	MESSWEG	MESSBEREICH
IRHD M/DIN ISO 48	153,3 mN	235 mN	Ø 0,4 mm	Ø 3,35 mm	0,3 mm	30 - 100
IRHD N/DIN ISO 48	5,7 N	8,3 N	Ø 2,5 mm	Ø 20 mm	1,8 mm	30 - 100
IRHD H/DIN ISO 48	5,7 N	8,3 N	Ø 1,0 mm	Ø 20 mm	0,44 mm	85 - 100
IRHD L/DIN ISO 48	5,7 N	8,3 N	Ø 5,0 mm	Ø 22 mm	2,1 mm	9,9 - 34,9
VLRH/DIN ISO 27588	100,0 mN	235 mN	Ø 2,5 mm	Ø 6,0 mm	1,0 mm	0 - 100
Pusey & Jones	1000 g	-	Ø 3,175 mm	-	-	0 - 300

« WEICH — MITTEL — HART »

HIGH-TECH MADE IN GERMANY

BAREISS PRÜFGERÄTE WERDEN IN ALLE WELT EXPORTIERT

ARGENTINA CIS
AUSTRALIA COLUMBIA
AUSTRIA CZECH REPUBLIC
BELGIUM DENMARK
BRAZIL EGYPT
CANADA FINLAND
CHINA FRANCE

GREAT BRITAIN
HUNGARY
INDIA
IRELAND
INDONESIA
IRAN
ISRAEL

ITALY
JAPAN
KOREA
MALAYSIA
NETHERLANDS
NORWAY
POLAND

PORTUGAL ROMANIA RUSSIA SWEDEN SWITZERLAND SINGAPORE SLOVAKIA SPAIN
TAIWAN
THAILAND
SOUTH AFRICA
TUNISIA
TURKEY
USA

Telefon: +49 (0) 7305 / 96 42-0

Telefax: +49 (0) 7305 / 96 42-22

